

Design Example: Allegany County Burbridge Building

Stormwater Design Workshop
April 21, 2010

Angie Patterson, P.E.

Land Use & Planning Engineer

Allegany County Department of Community Services

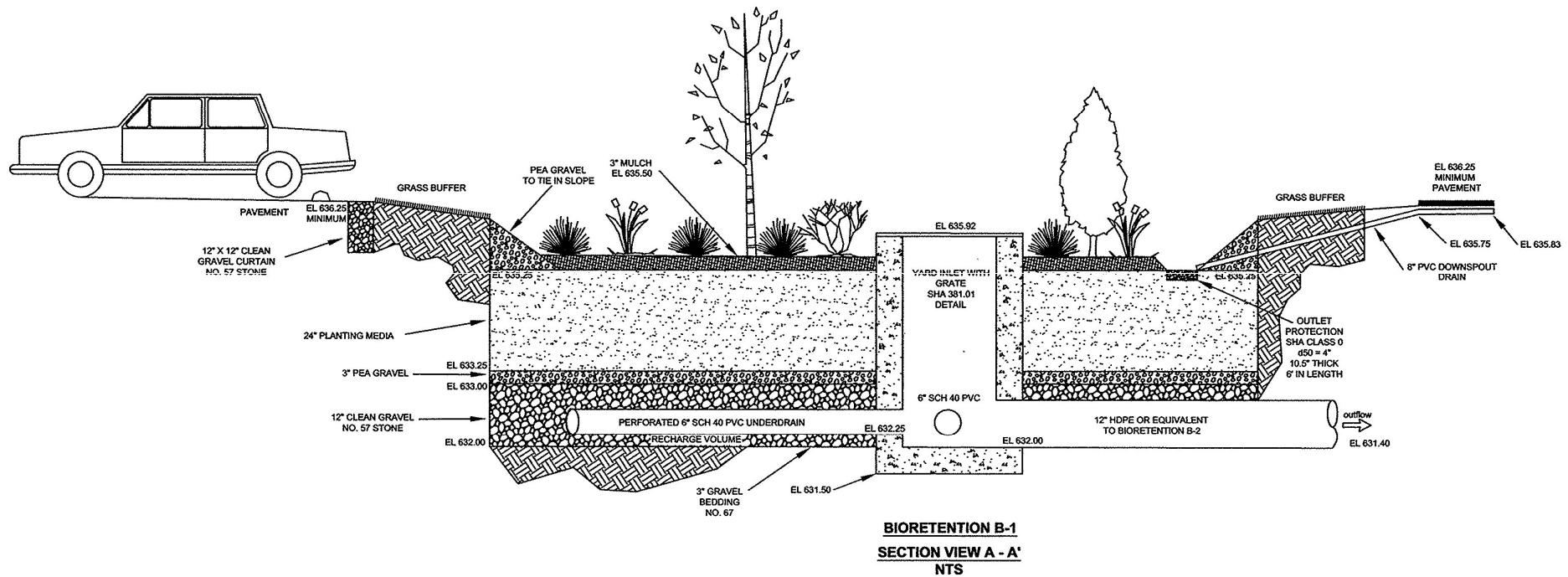
apatterson@allconet.org

301-777-2199, ext. 130

Burbridge Building

- 15,000 sf Industrial Building
- 2 acre site in North Branch Industrial Park
- 2 Loading Docks w/ truck turnaround
- Employee parking

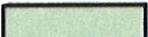
Key Issues: Concept Plan Phase


- Soils Investigation by Allegany SCD
 - HSG D
 - Fragipan @ 3 ft. depth – impermeable layer
 - Perc Test below fragipan: 0.1 in/hr
 - Hydric Soils
 - Result: underdrain required
- Wetland Determination by MDE
 - Hydric soils present
 - Wetland vegetation present
 - Could not establish hydrology
- <http://maps.google.com/maps>

Refer to Handout

Micro-Bioretention B-1 Cross Section

Lessons learned from this Design Example


- Approach A and Approach B basically result in same size facility
- $P_E=15''A_f/DA$ (Equation 5.2) is very conservative
 - Use as a “planning tool” in Concept Phase only
 - Do not use A_f derived from Equation 5.2 as a controlling function when sizing micro-bioretention facilities
 - Use ESDv as controlling function

Other Points

- Suppose $P_E = 1.8''$ could not be met:
 - Say only $P_E = 1.0''$ was met —→ Use Table 5.3 to get Reduced CN=85

Hydrologic Soil Group D										
%I	RCN*	$P_E = 1''$	1.2''	1.4''	1.6''	1.8''	2.0''	2.2''	2.4''	2.6''
0%	80									
5%	81									
10%	82									
15%	83									
20%	84	77								
25%	85	78								
30%	85	78	77	77						
35%	86	79	78	78						
40%	87	82	81	79	77					
45%	88	82	81	79	78					
50%	89	83	82	80	78					
55%	90	84	82	80	78					
60%	91	85	83	81	78					
65%	92	85	83	81	78					
70%	93	86	84	81	78					
75%	94	86	84	81	78					
80%	94	86	84	82	79					
85%	95	86	84	82	79					
90%	96	87	84	82	79	77				
95%	97	88	85	82	80	78				
100%	98	89	86	83	80	78	77			

 Cp_v Addressed (RCN = Woods in Good Condition)

 RCN Applied to Cp_v Calculations

Use CN=85 to address Cp_v in a BMP

Other Points

- How to handle larger storm events
 - Demonstrate safe passage of 10-year storm (yard inlet/barrel)
 - Used TR-55 and Hydraflow
 - Suppose management of 10-year storm is required
 - Use “true” post-development CN to determine 10-year volume to be stored in Best Management Practice (BMP)
 - Then subtract ESDv from volume stored in BMP
- How to size culverts downstream of ESD practices
 - Use “true” post-development CN

Other Points

- Should provide Recharge volume (Re_v) below invert of underdrain pipe.
 - Sub-area B-1:
 - $Re_v = (S)(R_v)(A)/12 = (0.07)(0.662)(31,220 \text{ sf})/12 = 121 \text{ cf}$
where $S = 0.07$ (HSG D)
 - Volume below underdrain pipe (3 inches):
 $= (1,280 \text{ sf})(0.25 \text{ ft})(0.4)$
 $= 128 \text{ cf} > Re_v \text{ of } 121 \text{ cf}$ ✓

Questions?

Design Example: Allegany County Burbridge Building

Stormwater Design Workshop
April 21, 2010

