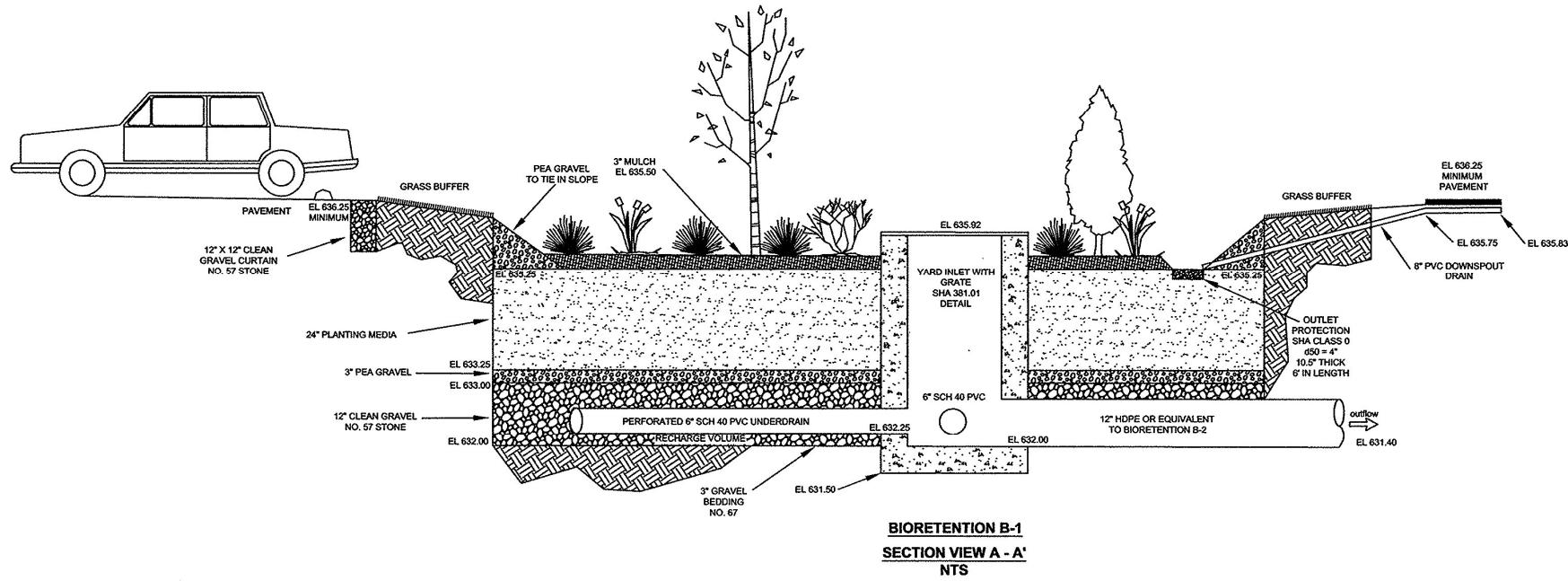


Design Example: Allegany County Burbridge Building
 15,200 sf Industrial Building
 2 Loading docks w/ truck entrance and turnaround and Employee Parking

Step 1: Determine Target Rainfall P_E for entire site w/in limits of disturbance:

For this project, DA = Drainage Area = Site Area = Limits of Disturbance Area = 2.0 acres

$$I = \text{Percent Impervious Area} = 1.12 \text{ acres} / 2.0 \text{ acres} = 0.56 = 56\%$$


Hydrologic Soil Group D

%I	RCN*	$P_E = 1"$	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	80									
5%	81									
10%	82									
15%	83									
20%	84	77								
25%	85	78								
30%	85	78	77	77						
35%	86	79	78	78						
40%	87	82	81	79	77					
45%	88	82	81	79	78					
50%	89	83	82	80	78					
55%	90	84	82	80	78					
60%	91	85	83	81	78					
65%	92	85	83	81	78					
70%	93	86	84	81	78					
75%	94	86	84	81	78					
80%	94	86	84	82	79					
85%	95	86	84	82	79					
90%	96	87	84	82	79	77				
95%	97	88	85	82	80	78				
100%	98	89	86	83	80	78	77			

Target Rainfall for entire site is 1.8 inches ($P_E=1.8"$)

Step 2: Calculate size of Micro-Bioretention for Sub-Area B-1

Approach A: Include green space	Approach B: Exclude green space
Impervious Area = $7,600 + 13,620 = 21,220$ sf	Impervious Area = $7,600 + 13,620 = 21,220$ sf
Green Area = 10,000 sf	Green Area = zero
$DA = 21,220$ sf + 10,000 sf = 31,220 sf	$DA = 21,220$ sf
$I = 21,220$ sf / 31,220 sf = 0.68 = 68%	$I = 21,220$ sf / 21,220 sf = 100%
$P_E = 15"(A_f)/DA$ (Equation 5.2)	$P_E = 15"(A_f)/DA$ (Equation 5.2)
Solve for A_f : $A_f = P_E(DA)/15 = 1.8(31,220)/15$ $A_f = 3,746$ sf	Solve for A_f : $A_f = P_E(DA)/15 = 1.8(21,220)/15$ $A_f = 2,546$ sf
Determine ESD Volume: $ESD_V = P_E(R_v)(A)/12$	Determine ESD Volume: $ESD_V = P_E(R_v)(A)/12$
Determine Runoff Coefficient, R_v : $R_v = 0.05 + 0.009(I) = .05 + .009(68) = 0.662$	Determine Runoff Coefficient, R_v : $R_v = 0.05 + 0.009(I) = .05 + .009(100) = 0.95$
$ESD_V = (1.8)(0.662)(31,220)/12 = 3,100$ cf	$ESD_V = (1.8)(0.95)(21,220)/12 = 3,024$ cf
<i>Micro-bioretention must capture and store at least 75% of the ESDv: (3,100 cf)(0.75) = 2,325 cf</i>	<i>Micro-bioretention must capture and store at least 75% of the ESDv: (3,024 cf)(0.75) = 2,268 cf</i>
Here is what NOT to do: Try $A_f = 60 \times 63 = 3,780$ sf	Here is what NOT to do: Try $A_f = 50 \times 46 = 2,300$ sf
Depth = 1.0 ft gravel underdrain (n=0.4) 2.0 ft min. filter bed thickness (n=0.4) 0.67 ft ponding depth	Depth = 1.0 ft gravel underdrain (n=0.4) 2.0 ft min. filter bed thickness (n=0.4) 0.67 ft ponding depth
Facility Volume = $3,780[(3 \text{ ft.})(0.4)+0.67 \text{ ft.}]$ = 7,069 cf TOO BIG! (ESDv=2,325 cf)	Facility Volume = $2,300[(3 \text{ ft.})(0.4)+0.67 \text{ ft.}]$ = 4,301 cf TOO BIG! (ESDv=2,268 cf)
Here is what TO do: Solve for A_f using $ESD_V = 2,325$ cf	Here is what TO do: Solve for A_f using $ESD_V = 2,268$ cf
$2,325$ cf = $A_f [(3 \text{ ft.})(0.4)+0.67 \text{ ft.}]$ $A_f = 1,243$ sf	$2,268$ cf = $A_f [(3 \text{ ft.})(0.4)+0.67 \text{ ft.}]$ $A_f = 1,213$ sf

